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The structure and evolution of angiosperm nuclear genomes 

Jeffrey L Bennetzen 

Despite several decades of investigation, the organization of 
angiosperm genomes remained largely unknown until very 
recently. Data describing the sequence composition of large 
segments of genomes, covering hundreds of kilobases of 
contiguous sequence, have only become available in the past 
two years. Recent results indicate commonalities in the 
characteristics of many plant genomes, including in the 
structure of chromosomal components like telomeres and 
centromeres, and in the order and content of genes. Major 
differences between angiosperms have been associated 
mainly with repetitive DMAs, both gene families and mobile 
elements. Intriguing new studies have begun to characterize 
the dynamic three-dimensional structures of chromosomes 
and chromatin, and the relationship between genome 
structure and co-ordinated gene function. 
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Abbreviations 
LTR         long terminal repeat 
MAR        matrix attachment region 
MITEs     miniature inverted repeat transposable elements 

Introduction 
The genomes of flowering plants are less well charac-
terized than are those of model fungi or animals. Many 
hundreds of plant genes have been cloned, sequenced and 
functionally characterized, however, as isolated segments 
of DNA. As in other eukaryotes, plant genes are 
relatively small and discrete entities consisting mainly 
of coding regions (introns) and a few hundred basepairs 
of regulatory sequences. Although regulation of a gene 
by sequences at a great distance may be profoundly 
important in plants, as recently demonstrated by such 
phenomena as transgene-mediated silencing [1,2,3*], the 
minimal components necessary for fairly specific gene 
expression and regulation are usually present on only a 
few kilobases of contiguous sequence containing the gene. 
Hence, an understanding of this most basic level of gene 
structure and regulation has not required any significant 
understanding of genome structure. The importance of 
genome structure to gene regulation, however, is indicated 
by the routine observation that the same transgene 
integrated into different locations will display different 
levels of expression [1,2,3*]. 

Comprehensive studies of the structure of the nongenic 
DNA of plants, and its relationship to gene function and 

chromosomal mechanics, have begun only recently. Five 
years ago we knew that plant genomes vary greatly in 
size, caused partly by variation in ploidy but largely by 
differences in the amount of repetitive DNA [4]. We 
also knew that some of these repetitive DNAs were 
tandemly arrayed genie or nongenic sequences, and many 
were mobile DNAs somehow interspersed with genes and 
other repeats [5]. Until the advent of technologies that 
allowed the cloning and analysis of large segments of 
contiguous plant DNA, this vague description could not 
be significantly augmented. 

Recent discoveries indicate that plant genomes have 
very specific patterns of organization for their nongenic 
sequences. One advantage of flowering plant genome 
studies is that, although few studies have been very deep 
or comprehensive, a wealth of different species has been 
investigated. This allows an evolutionary perspective often 
lacking in other eukaryotic systems. 

Perhaps the most exciting developments have occurred 
over the past five years or so, which have produced 
studies directly investigating the relationship between 
DNA sequence arrangement, chromosome structure, and 
genetic activity in plants. These studies have utilized a 
whole array of molecular and cytogenetic tools to uncover 
how chromosome structure changes over time, and how 
the expression and three dimensional structure of an 
individual gene may be affected by its chromosomal 
location. This review begins by describing the common 
structural features of angiosperm genomes, and goes on 
to indicate how these structures are conserved or vary 
over time and between species. The review continues 
with a discussion of groundbreaking insights into the 
relationship between genome structure and co-ordinated 
gene/chromosome function and concludes with a brief 
glimpse at the many questions of genome organization and 
behavior that remain to be answered. 

The components of any angiosperm genome 
Like all other eukaryotes, standard plant chromosomes 
contain genes, mobile repetitive DNAs (otherwise known 
as transposable elements), and various classes of tandemly 
repeated sequences. Many of the tandem sequences, 
including telomeric repeats and ribosomal DNA repeats, 
are essential for the survival of the organism. Other 
tandem or interspersed repeat classes, like minisatellites, 
microsatellites and transposable elements, may be parasitic 
or selfish DNAs. Although repetitive sequences are 
present in all plants, their relative representation can be 
quite variable. For instance, tandem satellite repeats make 
up a major share of the total repetitive DNA in Arabidopsis 
but are a minor component of the maize genome where 
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the vast majority of repetitive DNA is composed of 
retrotransposons [6",7]. 

Genes and gene families 
Genes are present on most plant chromosomes, with the 
possible exception of the heterochromatic B chromosomes 
found in some isolates of many plant species. Genes tend 
to be unevenly dispersed along a chromosome: they are 
rare or totally absent from centromeres, telomeres and 
other heterochromatic sites, and may be largely missing 
from the majority of the chromosome, particularly in big 
chromosomes with large and heterochromatic centromeres, 
like those of wheat [8]. 

In small-genome species, genes may be very close to each 
other [9,10]. For example, in a 190Mb region of Arabidopsis 
chromosome 4, genes are found at a density of about 
one per 4.8 kb [10]. Often, only a few hundred basepairs 
separate individual genes. In large-genome species, genes 
are often separated by large blocks of repetitive DNA. 
For instance, in the Adhl-f region of maize, about 80% 
of the DNA is repetitive and 4-8 genes are found 
in a contiguous segment of 240kb [6",11]. Even in large-
genome species, however, tandemly repeated genes may 
often be found very close together, as with the 
ribosomal DNA. This presumably reflects either a recent 
origin of the repeated genes (without time for subsequent 
intervening mobile DNA insertions) and/or a concerted 
process to remove most subsequent sequence changes by 
unequal recombination. 

Centromeres 
Plant centromeres are defined genetically and cytologically 
as chromosomal constrictions that are required for chro-
mosomal segregation in mitosis and meiosis. Centromeric 
chromatin is highly condensed and, in large chromosomes, 
can comprise over half of the entire chromosome. At the 
DNA level, a plant centromeric region can be as small 
as 1Mb (e.g. Arabidopsis) or over 100Mb (e.g. wheat) 
[8]. Many of the sequences in these heterochromatic 
regions can also be found elsewhere in the genome [12,13]. 
In fact, it is expected that most centromere-associated 
sequences are not involved in centromere function, but 
have accumulated within the associated heterochromatin, 
perhaps due to the lack of recombinational activity 
of the DNA in these large centromeric regions. The 
required functional components of a centromere have 
not been well defined in plants, although rearrangement 
of B chromosomes in maize has shown that a single 
centromere can sometimes be divided into more than 
one functional centromere, with a size of less than a 
megabase [14]. In many cases, plant chromosomes contain 
noncentromeric sites that can exhibit centromeric behavior 
under some circumstances. These 'neocentromeres' are 
generally condensed heterochromatic structures, and have 
been associated with tandemly repeated minisatellites, 
such as the knob satellite of maize [15]. Recent cloning 
and in situ hybridization studies have identified sequences 

that are tandemly repeated at all cereal centromeres 
[16,17]. Although not a direct proof of function, the conser-
vation of centromere-associated repeats suggests that these 
repeat sequences are necessary for centromeric function. 
Moreover, the fact that neocentromeres, B chromosome 
centromeres, and standard chromosomal centromeres all 
share several features, including tandem repeats of about 
180bp and a highly heterochromatic state, suggests that 
this structure is required for centromeric activity. Recent 
studies in maize have shown that a mutation in suppressor 
of meiotic drive 1 affects neocentromeric function [18], 
an observation that may eventually provide access to a 
protein that will link centromere DNA/chromatin structure 
to chromosome segregation. 

Telomeres 
As in most other eukaryotes, the termini of the linear 
plant chromosomes in the nucleus contain short tandem 
repeats of a sequence added by the enzyme telomerase 
[19], Telomerase activity compensates for the inability 
of semi-conservative DNA replication to replicate linear 
chromosome ends, and also prevents the various activities 
(chromosome fusion, terminal degradation, etc.) that 
McClintock first noted for broken chromosome ends 
[20]. Recent cloning studies have directly investigated 
the healing of broken chromosome ends in wheat by 
the addition of telomere repeats [21]. Telomere repeat 
sequences are fairly similar across all eukaryotes, indicating 
the conserved nature of the RNA template within the 
telomerase reverse transcriptase. Other repeats are found 
preferentially associated with telomeres [22]. It is not 
known whether these sequences might be parasitic or 
selfish sequences that accumulate at telomeres or whether 
they play some role in telomere function. Plants often have 
some telomere repeats near their centromeres [23,24], or 
centromere repeats near their telomeres [17], suggesting 
either that full arm inversions or translocations are 
common in evolution or that many chromosomes have 
arisen by centromere fusions, or both. Like centromeres, 
telomeres may play an important role in the process of 
chromosomal synapsis and/or segregation, as suggested by 
their clustering near the nuclear periphery before meiotic 
prophase [25"]. 

Satellite repeats 
Tandemly repeated sequences are scattered throughout 
all eukaryotic genomes. Short tandem repeats of a few 
base pairs, so-called microsatellites or simple sequence 
repeats, are usually hypervariable and have become useful 
markers for genetic mapping. Although they are found on 
all chromosomes in large numbers, their small size dictates 
that they will not represent more than a tiny percentage 
of a total plant genome. The overall genomic organization 
of microsatellites has not been extensively investigated, 
although they do appear to be somewhat over-represented 
in introns [9,10] and under-represented in mobile DNAs 
(P Miguel, A Tikhonov, personal communication). The 
larger minisatellite repeats are also ubiquitous in plants, 
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although they rarely make up more than a few percent 
of the total genome size. Monomer minisatellite repeats 
are often 180bp-220bp in size, compatible with a single 
repeat per nucleosome. These minisatellites commonly 
are present in many thousands of tandem copies, where 
they will form a large and fairly homogeneous knob of 
heterochromatin. 

Mobile DNAs 
Mobile DNAs fall into two major categories, those that 
transpose as DNA molecules and those that transpose 
through an RNA intermediate. The better-known ele-
ments, like Ac and En/Spm, fall into the former class. Most 
of these elements contain short inverted repeat termini, 
and preferentially insert into gene-associated regions [26]. 
The copy numbers of these elements are usually fairly low, 
often <4 per genome for the active element (e.g. Ac) that 
encodes the mobilizing transposase, and usually less than 
a few hundred defective elements (e.g. Ds) that respond to 
the transposase. Hence, these elements comprise at most 
a few percent of any plant genome. One exception to 
this general low copy number for inverted repeat (DNA) 
elements is provided by the miniature inverted repeat 
transposable elements (MITEs). These elements can be 
found in thousands of copies per genome, and fall into 
several families [27,28]. The mechanism of transposition 
for these elements is not known, although they appear 
in many ways similar to small defective elements like 
Dsl. Like other inverted repeat transposable elements in 
plants, MITEs are found mainly in or near genes. Most 
recently, MITEs have been found to be preferentially 
associated with putative matrix attachment regions [29*]. 
Because of their general small size, around 200 bp or so, 
MITEs tend to represent only a small part of most plant 
genomes despite their often high copy number. 

Mobile elements that move through an RNA intermediate 
are called retroelements, and fall into several classes that 
are found in all eukaryotes, including plants [28,30,31*]. In 
large-genome plants like barley, lily and maize, retrotrans-
posons that contain long terminal repeats (LTRs) make up 
the majority of the DNA in the nuclear genome. These 
elements tend to be fairly large, from a few kilobases up 
to more than 15kb, and can have copy numbers ranging 
anywhere from one copy to hundreds of thousands of 
copies per genome [6**,31*]. In maize the highly repetitive 
LTR-retrotransposons are primarily found in nested blocks 
between genes, indicating a preference for insertion and/or 
retention within inactive and methylated regions [6**], 
Lower copy number retrotransposons do sometimes insert 
within or near genes, and these gene-associated insertions 
can serve as the raw material for the evolution of new m-
regulators of adjacent genes [25",32]. 

The evolution of genome organization: 
colinearity 
Sequence changes associated with genes have been 
extensively studied by evolutionary biologists, who have 

utilized the process of genetic drift within genes as a basis 
for phylogenetic characterization. Cytogeneticists have 
also studied the nature and rate of changes in chromosome 
structure and number in plants. Because of technical 
limitations, little has been known about the nature of 
genome change between the levels of gene sequence and 
cytogenetic structure. Recombinational mapping using 
DNA markers, artificial chromosome clones containing 
large DNA inserts, and improved sequencing and gel 
technologies now allow scientists to fill that gap. 

Recombinational maps using the same DNA probes 
in different species have indicated that different plant 
genomes have similar overall gene content and extensive 
regions of colinear gene order [33-35]. This is particularly 
true among the grasses, where colinearity (or synteny) 
can be a basis for the merging of knowledge and tools 
from all grass species into a single model system [36]. 
Many exceptions to this colinearity have been noted, 
but even distantly related angiosperms (like sorghum 
and Arabidopsis [37]) may have a useful frequency of 
colinear segments. Among the more frequent rearrange-
ments observed are chromosome fissions/fusions; whole 
chromosome arm duplications, translocations or inversions; 
large segmental duplications; and variation in the copy 
numbers of gene families. None of these events occurs at a 
scale that significantly limits the usefulness of colinearity. 

Relatively few studies have tested for small rearrange-
ments within otherwise colinear genomes. In most cases, 
these studies have uncovered extensive similarity in local 
gene order, at the level of adjacent loci, but with some 
exceptions [9,11,38-40]. Disease resistance genes, which 
may evolve by different and more rapid mechanisms than 
most genes [41], often may not show colinearity [42]. 
As shown in Figure 1, the various local rearrangements 
that may be common in plants would usually interfere 
with microcolinearity, but would not be detected by 
standard recombinational mapping. For instance, none of 
the changes depicted in Figure 1 would qualitatively affect 
the linkage of markers 1 and 8, and most recombinational 
maps have a probe density and population size too small 
to score markers this close together. 

The evolution of genome size 
Plants vary tremendously in genome size, from the 
110Mb of Arabidopsis to some lily genomes that are 
about 1000-fold larger. Some of this variation is caused 
by differences in ploidy, but most can be attributed to 
higher amounts of mobile repetitive DNAs. All plants 
appear to have many different families of these elements, 
of all types, but larger genome plants appear to accumulate 
some small subsets of these elements (a few families 
of LTR-retrotransposons) at very high copy numbers 
[7,30,31*]. Hence, it is these elements that appear to 
be responsible for the C-value paradox, at least in the 
grasses [7,43*]. It is not clear whether small genome 
plants have less of these elements because they are better 
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Figure 1 ___________________________________________________________________________________________________________  

 

Possible local variations in genome structure that might be both frequent and undetected by recombinational mapping. The central bar depicts a 
small chromosomal segment containing nine genes whose placement, relative transcript size, and transcript orientation are shown by the small 
arrows. Gene 2 is already duplicated in this ancestral genome, (a) Tandem duplication of gene 2. (b) Deletion of a copy of gene 2. (c) Small 
inversion, involving genes 5, 6 and 7. (d) Amplification of genome size by insertion of nongenic DNA between genes. The filled blocks indicate 
mobile and/or repetitive DNAs, and the differences in the fill indicate that these sequences usually do not cross-hybridize between species outside 
of the same genus (because they are different elements and/or because they have diverged rapidly). 

able to inhibit their amplification, because they have 
somehow avoided contact with sources of most LTR-
retrotransposons, or because they have some unknown 
mechanism for removal of these repeats [43*]. Unlike 
genes, retrotransposons do not usually cross-hybridize 
between even closely related plant species, suggesting that 
they often may have been derived from recent horizontal 
transfers (for instance, by viral infection or via a wide 
cross). A retrovirus-like gene transduction by some of 
these elements [31*,44,45] also suggests an infectious 
transfer, as does their activation by stress and their ability 
to function across wide species boundaries [30,31*,46']. 
These LTR-retrotransposons, however, apparently evolve 
more rapidly than adjacent genes, at least partly because of 
their methylated and presumably heterochromatic status, 
and this may be responsible for their lack of detected 
conservation in related plants. 

Genes in a region: structure and function 
In plants with small genomes, genes are often very 
close together. In larger-genome plants, genes are often 
separated by long stretches of apparently nongenic se-
quences. For instance, in sequenced regions of Arabidopsis, 
rice, sorghum and maize, gene distances are about one 
per 5kb, 10kb, 10kb, and 40kb, respectively, in accord 
with their respective genome sizes of 110kb, 440kb, 
750kb, and 2400Mb [9-11]. The genes themselves, 
in comparable regions, are of similar size. Moreover, 

because recombination is largely limited to genes, five 
genes scattered across 200kb in maize may cover the 
same number of centiMorgans as those five genes do 
when present in 50kb of rice DNA. In many large 
plant genomes, most of the repetitive DNA may be 
associated with centromeric heterochromatin, leaving the 
gene-containing regions to have a fairly high gene density 
[8] which is comparable to that of smaller-genome species. 

Plant genomes have found mechanisms, probably the 
various epigenetic phenomena associated with transgene-
mediated suppression and position effects [1,2,3*], that 
keep mobile and other repetitive DNAs in a usually 
inactive form. Somehow, plants have managed to differ-
entiate between desirable repeats, like gene families, and 
potentially damaging repeats, like transposable elements. 
In many ways, genes that exhibit paramutation [47] behave 
as though they are caught somewhere between these two 
poles. Studies in animals, and some in plants [3*,48*], 
suggest that flanking matrix-attachment regions (MARs) 
can decrease the frequency of transgene inactivation. 
In cases where MARs have been mapped across large 
contiguous segments of plant DNA, they were often found 
to be adjacent to promoters, in many cases separating 
those promoters from repetitive/heterochromatic DNA 
blocks [49,50*]. Most recently, a comparison of the SA2/Al-
homologous regions of rice and sorghum has shown 
conservation of MAR location between the two species, 
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even though the primary DNA sequences that provide 
MAR function were not detectably conserved [29*]. 

Conclusions 
We are now beginning to delineate the components 

of plant nuclear genomes, and to determine both their 
organization and their primary structural contributions. 
LTR-retrotransposons appear to be the major class of 
DNA in large-genome plants, but their contribution to a 
plant's physiology is minimized by their low levels of 
expression and their separation from genes. Mobile DNAs 
with low copy numbers appear to play a disproportionate 
role in gene mutation and the provision of raw material for 
the evolution of new functions because of their common 
insertion near genes. Rapid variation in the copy number 
of some gene families is another major route for the 
evolution of new gene specificities. The contributions 
of particular repeat sequences to chromosomal dynamics, 
including recombination, segregation, mutation, and repli-
cation, are now being investigated with molecular, genetic 
and cytogenetic tools. 

Many questions remain to be answered. We still do 
not understand why some genomes have accumulated 
amplified retrotransposons and others have not. These 
questions can be approached with transgenic retrotrans-
poson experiments and by more comprehensive phyloge-
netic characterizations. The fine details of local genome 
rearrangements, specifically their relative frequencies and 
sizes, remain to be determined. These studies will require 
extensive chromosome sequencing, and in more than just 
one or two plant species. To date, there is no case in 
plants where we understand the trans-acting factors (i.e. 
enzymes) that drive such outcomes of genome organiza-
tion as telomere aggregation before prophase, centromere-
driven chromosome synapsis or segregation, gene-specific 
recombination or transposon insertion, higher-dimensional 
chromosome folding, position effect, paramutation, or 
transgene-mediated suppression. Even with all these tasks 
before us, understanding these questions will provide 
only our first entry into understanding the relationship 
between genome organization and function. Subsequent 
generations of studies will investigate three-dimensional 
genome structure in the nucleus, with respect to both the 
dynamics of the cell cycle and the changes associated with 
environmental and developmental responses. The tools for 
these analyses are just now coming into existence, and 
the future holds enormous promise for the study of plant 
genome organization. 
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