
The study of double-strand chromosome break repair by
homologous and nonhomologous recombination is a growth
industry. In the past year, there have been important advances
both in understanding the connection between recombination
and DNA replication and in linking recombination with origins
of human cancer. At the same time, a combination of
biochemical, genetic, molecular biological, and cytological
approaches have provided a clearer vision of the specific
functions of a variety of recombination proteins. 
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Abbreviations
ATM ataxia telangiectasia mutation
DSB double-strand break
HR homologous recombination
NHEJ nonhomologous end-joining
Sir silent information regulator

Introduction
Much progress in our understanding of recombination has
been associated with the impressive and rapid develop-
ment of specific recombination assays in vertebrate cells
that permit a direct comparison between yeast and verte-
brates. Site-specific rare-cutting endonucleases, such as
HO and I-SceI, are making it possible to create double-
strand breaks (DSBs) in chromosomes, producing results
that are quite different from those obtained on the basis of
the transfection of ‘naked’ DNA into cells. One important
realization is that homologous recombination (HR) and
nonhomologous end-joining (NHEJ) compete with each
other and take place at comparable frequencies. Although
budding yeast favors HR over NHEJ and mouse cells pre-
fer NHEJ, the differences are much less than an order of
magnitude [1••,2•]. The idea that the ratio of HR to NHEJ
is developmentally has recently received support from a
study of Ku DNA end-binding proteins during meiosis in
mouse cells [3•]. Ku proteins participate in  NHEJ.
Goedecke et al. [3•] found that the level of Ku proteins
decreases during mouse cell meiosis, so that presumably
HR becomes favored over NHEJ. 

HR proteins
HR in Saccharomyces requires the RecA-homologous strand
exchange proteins Rad51p (and the two Rad51-related pro-
teins Rad55p and Rad57p), Rad52p, Rad54p and Rad59p.
Rad50p, Mre11p and Xrs2p are also important. All these
proteins have vertebrate homologues [4,5]. Investigation of
the functions of these proteins has produced much new
information and has provided further evidence that these

proteins are important in preventing cancer. The roles of
these recombination proteins are discussed below.

Rad51p
In vertebrates, the absence of Rad51p is lethal. When it is
depleted from chicken DT40 cells, it causes an accumulation
of chromosome breaks. Takeda and colleagues [6•], using
chicken DT40 cells, created a mutation in Rad51p that pre-
vents ATP hydrolysis but allows ATP binding; this mutated
Rad51p rescues lethality in Rad51p null cells. However,
recombination is surprisingly robust in this Rad51p mutant,
showing that the essential functions of Rad51p are indepen-
dent of ATP. By depleting Rad51p, or eliminating Rad54p
(another recombination protein), Takeda and colleagues
have also shown that sister chromatids in mammalian cells
undergo exchange through HR [7]. In addition to Rad51p,
vertebrates have five Rad51 homologues (Rad51B, Rad51C,
Rad51D, XRCC1 and XRCC2) whereas yeast has only two.
It now seems that all of them play important roles in recom-
bination, although none of them is essential for cell viability.
For example, Jasin and colleagues [8,9] have shown that
XRCC2 and XRCC3 deletions reduce I-SceI-induced
recombination in mouse cells.

Rad54p 
Rad54p facilitates Rad51p’s strand exchange activity
in vitro [10]. The importance of Rad54 homologues in HR
has been demonstrated in fruit flies [11], chicken DT40
cells [7] and mice [12]; although, unlike Rad51p, Rad54p
is not essential. In addition, rad54–/– yeast cells are not as
severely defective in recombination as rad51–/– mutants
[13]. In fact, from yeast to humans, there are only two
Rad54-like proteins: Rad54p and Rad54Bp. In yeast, they
apparently participate in different pathways, with Rad54p
playing the key role in sister-chromatid recombination
[14], and Rad54Bp (known in yeast as Tid1p or Rdh54p)
being more important for inter-chromosomal transactions.
(How cells know which recombination machinery to use,
depending on the homologous partner chosen, is an endur-
ing mystery). However, much of the increased interest in
Rad54p and Rad54Bp has come from the demonstration
that these genes are often mutated in primary cancers
[15,16]. Loss of heterozygosity near other human recombi-
nation genes has also been noted, suggesting that when a
mutant allele is homozygous, cells have an elevated prob-
ability of developing cancer [17]. 

BRCA1p and BRCA2p
The connection between HR and cancer has been
strengthened by the demonstration that a mutation in the
breast cancer gene BRCA1 reduces recombination in
mouse cells [18••]. BRCA1p interacts with Rad51p, as well
as with the Mre11–Rad50 complex [19], which has been
implicated both in HR and in NHEJ. Whether another
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breast cancer-associated protein, BRCA2p, which also
complexes with Rad51p, is involved directly in recombina-
tion should be known soon. 

Rad52p
In yeast, RAD51 does not appear to be as essential as it is
in vertebrates. A number of HR events can occur without
RAD51, including the maintenance of telomeres in the
absence of telomerase [20•]. In contrast, RAD52, which
encodes a strand annealing protein, seems to be the most
essential recombination gene. Interestingly, yeast appear
to have an alternative HR pathway for telomere mainte-
nance that uses Rad50p, Mre11p and Xrs2p [20•]. Both
pathways require RAD52. Perhaps this second pathway
could be investigated using an allele of RAD52 that is only
defective in recombination in the absence of RAD51 [21].
There is another Rad52-like protein, Rad59p, that also
appears to be part of a RAD52-dependent, RAD51-inde-
pendent, pathway [21]. Like Rad52p, Rad59p may be
involved in strand annealing. 

Studies of RAD52 in higher eukaryotes pose the question
of whether it has evolved a different role than in budding
yeast. In fission yeast, which is evolutionarily remote from
budding yeast, it now seems that there are two Rad52
homologues (both homologous to yeast Rad52 and not to
yeast Rad59). A double mutant of these homologous is
inviable, possibly because of failures to repair DNA dam-
age arising during replication, but perhaps for other
reasons [22]. In vertebrates, cells with a Rad52 knockout
are not seriously compromised. Perhaps there are addition-
al Rad52 homologues still to be found. In any case, in vitro,
human and yeast Rad52p stimulates Rad51p-mediated
strand exchange and these two proteins clearly interact
[23]. In addition, Rad52p appears to bind selectively to
DNA ends [24]. Curiously, in both Caenorhabditis and
Drosophila the apparently complete genome sequence pro-
vides no evidence of a Rad52 homologue.

Mre11
Yeast Mre11, Rad50 and Xrs2 proteins participate in a
remarkably diverse set of functions, affecting HR, NHEJ
telomere maintenance, the induction of meiotic DSBs and
checkpoint regulation of the G2/M DNA damage response
(reviewed in [5]). Surprisingly, a mre11 deletion specifical-
ly reduces recombination in the G2 phase of the cell cycle,
between both sister chromatids and homologous chromo-
somes, much more profoundly than inter-homologue HR
in G1 [25]. This seems to be another example of different
repair pathways using distinct protein complexes. 

Connecting homologous recombination to
replication
The lethality of vertebrate cells lacking Rad51p seems to
be caused by the accumulation of chromosome breaks that
are believed to arise during the normal process of DNA
replication. It is now becoming evident that one major role
of recombination is to re-establish replication at broken

replication forks. This idea is strongly supported by recent
work in Michel’s laboratory on bacteria that describes how
recombination proteins participate in the re-initiation of
DNA replication [26]. At the same time, it is becoming evi-
dent that recombination events themselves involve nearly
all of the components of normal DNA replication [27•].
This result adds to a growing body of evidence that the
mechanism of gene conversion repair of DSBs may not fol-
low the mechanism outlined by Szostak et al. [28], but
instead takes place through one of several versions of syn-
thesis-dependent strand annealing (SDSA) [5,29]. These
ideas have found further experimental support from sever-
al studies showing that recombination of bacteriophage in
Escherichia coli involves extensive DNA synthesis, consis-
tent with a ‘copy choice’ or ‘break-induced replication’
mechanism [30,31], which also appears to be important in
eukaryotes (reviewed in [32]).

Homologous recombination during meiosis
All eukaryotes examined so far have a second RAD51-like
gene, DMC1, that is expressed only in meiotic cells.
Knocking out dmc1 impairs or prevents meiosis. Whether
Dmc1p acts in the same ‘recombinosome’ as Rad51p is an
important issue that remains to be addressed. In
Saccharomyces, these proteins are sometimes colocalized in
foci that are visible in meiotic prophase. A recent electron
microscopic study argues that they are present in the same
complexes of recombination proteins in mouse meiosis as
well [33]. Genetic evidence suggests, however, that the
two proteins do not perform all the same tasks. Loss of
Dmc1p eliminates both inter-homologue and inter-sister
chromatid recombination intermediates, whereas the loss
of Rad51p reduces and delays the appearance of these
intermediates [34]. Structural studies show that the two
RecA-like proteins form different polymeric structures on
DNA in vitro. Yeast and human Rad51p make an extended
helical filament — which was first described for bacterial
RecA protein (reviewed in [4]) — whereas human Dmc1p
forms eight-membered rings [35]. It is not known whether
they form different structures when both are present at the
same time. There is also strong evidence that Rad51p and
Dmc1p interact preferentially with different homologues
of Rad54p [36].

HR during meiosis is quite different from mitotic recom-
bination in many respects. In Saccharomyces, meiotic
recombination is initiated by creating 5′-ended DSBs by a
meiosis-specific topoisomerase II-like protein, Spo11p. So
far, meiotic DSBs have only been found in Saccharomyces,
but homologues of Spo11p have been found in
Schizosaccharomyces, Caenorhabditis and Drosophila, and
recently, in mice [37•,38•]. We await knockouts of the
mouse SPO11 gene to see whether it will prevent meiotic
recombination as observed in other organisms. 

Another special feature of meiosis is the high level of cross-
ing over associated with DSB-induced recombination. One
pair of proteins involved in crossover regulation during



meiosis is Msh4p and Msh5p, homologues of the
Msh2–Msh3–Msh6 mismatch repair proteins. Neither
Msh4p nor Msh5p affects mismatch repair per se; rather,
they appear to be involved in the resolution of Holliday
junction-containing recombination intermediates. Whether
Msh4p and Msh5p are capable of binding to Holliday junc-
tions has not yet been shown. Ironically, Msh2p and Msh6p
have been reported to bind to these structures [39], despite
the fact that msh2 deletions do not seem to affect mitotic or
meiotic crossing over [5,40].

In mice and Caenorhabditis, the absence of the Msh4p and
Msh5p homologues is far more severe. In Msh4p/Msh5p-
deficient worms, crossing over appears to be completely
abolished, although noncrossover events may still take
place [41•]. In mice, homozygous deletion of msh5 com-
pletely destroys meiosis [42•,43•]. Thus, as with deletions
of rad51, rad50 or mre11, the absence of Msh5p in mice has
a much more severe phenotypes than in yeast. 

Recent analysis of cohesin proteins involved inholding sister
chromatids together has interjected another level of com-
plexity into the way meiotic recombination occurs. The Rec8
proteins of Saccharomyces and Schizosaccharomyces are compo-
nents of a meiosis-specific cohesin complex that appears to
establish associations between sister chromatids. In
Schizosaccharomyces pombe, the absence of Rec8p causes a
marked reduction in recombination, especially in the cen-
tromere-proximal regions [44–46]. In S. cerevisiae, the defect
is even more pronounced, apparently blocking the comple-
tion of repair of DSBs between both homologous and sister
chromosomes [47•]. These results suggest that cohesin func-
tion is required for establishing the chromosomal context
necessary for interhomolog recombination, as well as main-
taining a proper relationship between sister chromatids.

Nonhomologous end-joining
Some striking advances have been made in the analysis of
NHEJ. The Ku70 and Ku80 proteins, as well as DNA ligase
IV and its associated XRCC4 protein, are required for end-
joining in organisms ranging from yeast to humans (reviewed
in [5,48]). As mentioned above, Saccharomyces uses the NHEJ
pathway more than previously suspected, but only to ligate
short complementary ends; yeast are not very effective at
joining incompatible ends. Mammals use other microhomolo-
gies further from the end to produce joining, but this activity
is inefficient in yeast. In addition, yeast lacks the Ku-associat-
ed protein kinase catalytic subunit, DNA-PKcs, whereas in
mammals NHEJ is strongly influenced by this protein. 

Until recently, the only ‘programmed’ role for the NHEJ
system appeared to be in V(D)J rearrangements in the
immune system, but two reports have now shown that the
absence of DNA ligase IV has profound effects on the
maturation of murine brain cells [49••,50••]. As with the
immune system, the absence of Ku and DNA-PKcs has
less pronounced effects on brain cells than the loss of
DNA ligase IV. 

In budding yeast, NHEJ also depends strongly on Mre11p,
Rad50p and Xrs2p. These three proteins form a complex
with DNA-unwinding and nuclease activity. Mre11 and
Rad50 homologues are found in vertebrates, and homozy-
gous knockouts are lethal to the cell. A protein of similar
size, but with little homology to Xrs2, has also been found,
and mutations in this subunit are associated with Nijmegan
breakage syndrome. This syndrome is characterized by
chromosome instability and cancer-prone phenotypes rem-
iniscent of mutations of the checkpoint regulator, ATM
(ataxia telangiectasia mutation). Recently, another human
ATM-like disease has been linked to Mre11 [51•]. But it is
still not clear whether the defect in these cases is due to the
role of Mre11 in homologous or nonhomologous recombi-
nation or in the sensing of DNA damage. In fact, the loss of
the Mre11 homologue in fission yeast does not affect telom-
ere length or NHEJ, although cells are radiation sensitive
[52]. In DT40 cells, the absence of Mre11 affects homolo-
gous recombination, but does not affect end-joining [53].
The different requirements for the Mre11 complex in bud-
ding and fission yeasts illustrate the necessity of having
more than one model system for characterizing the mecha-
nisms of NHEJ. The number of apparently different
NHEJ pathways being identified continues to proliferate.
For example, in the absence of Mre11p, budding yeast cells
exhibit gross chromosomal rearrangements with junctions
that lack the microhomology seen in other cases [54•]. 

There has been a flurry of interest in the role of Sir (silent
information regulator) proteins in NHEJ. These proteins are
involved in the creation of regions of heterochromatin at
telomeres; therefore, the idea that broken ends might
become heterochromatic to retard degradation and facilitate
NHEJ was attractive. However it is now clear that the effect
of knocking out SIR genes is largely caused by the unsilenc-
ing of cryptic mating-type genes in Saccharomyces [2•,55];
cells expressing both mating types have increased HR and
decreased NHEJ, although the mating-type-regulated genes
that are responsible have not yet been identified. 

Checkpoint regulation of the repair of DSBs
DNA damage signals an arrest in cell cycle progression,
ostensibly to allow cells more time to repair a DSB, but it is
evident that there is more going on than simply providing a
longer period of grace prior to mitosis. In budding yeast,
DNA damage provokes a dramatic rearrangement of the
nucleus. Even a single DSB causes the delocalization of Ku
and Sir proteins from telomeres [56•–58•]. This reorganiza-
tion is dependent on a functional checkpoint system and
seems to occur predominantly during S phase. How this
occurs is not known. The loss of Ku proteins from telom-
eres correlates with the arrival of Ku at the site of a DSB
(detected by chromatin immunoprecipitation), but it is not
at all clear that Ku’s participation in NHEJ depends on its
release from telomeres. 

The absence of the checkpoint genes also causes a change
in the way homologous sequences are recruited to repair



DNA damage during both meiosis and mitosis. During
meiosis, rad17–/– and rad24–/– strains exhibit an increased
use of ectopically located homologous sequences and sister
chromatids in reciprocal recombination [59,60]. There also
seems to be a loss of the normal inhibition of sister-chro-
matid recombination. During mitosis, rad9–/– cells show an
increase in the formation of translocations by HR [61]. We
still need to determine whether  sequences actively
released from a nuclear matrix search out partners more
promiscuously, or whether a premature entry into mitosis
leaves some ends with no alternative.

Finally, a connection has been made between the check-
point gene ATM in mammalian cells and recombination.
Takeda and colleagues have now knocked out both copies of
the ATM gene in their DT40 cell line and shown that the
radiosensitivity of these cells is due to a deficiency in homol-
ogous recombination rather than NHEJ [62•]. Biochemical
support for this idea comes from two papers showing that
mammalian Rad51p is phosphorylated by c-Abl in an ATM-
dependent manner after ionizing radiation [63,64]. Curiously,
these authors find that the modified Rad51p is less efficient
in in vitro strand exchange assays and at forming complexes
with Rad52p. This finding is contrary to our expectations and
to what is observed in vivo in DT40 cells. The question that
remains is why should Rad51p become less active at the time
when there is DNA damage to repair.

Conclusions and prospects
The interactions and functions of many recombination
proteins are being characterized, and considerable progress
has been made in learning about the multiple repair path-
ways in which these proteins participate. From my point of
view, one of the most exciting and satisfying developments
over the last year has been the rapid emergence of verte-
brate model systems to examine HR mechanisms in detail,
and the demonstration of great similarity in the way simi-
lar events proceed in budding yeast. I notice a growing
interest in the importance of recombination, both from
cancer researchers and from students of DNA replication.
Further progress awaits us in this millennium.

Update
Several papers of interest have appeared recently. The uni-
versality of Spo11 control of meiosis is suggested by the
finding of two homologues in Arabidopsis, which are
expressed not only in reproductive cells but to a lesser
extent in somatic tissue [65•]. A third report of Spo11 in
mouse and human has also appeared [66•]. 

Control of homologous recombination in mammalian cells
has also been investigated by overexpressing UBL1p, a
Rad51p- and Rad52p-interacting, ubiquitin-like, protein
[67]. Li et al. [67] report that UBL1p overexpression down-
regulates DSB-induced homologous recombination and
makes cells more sensitive to ionizing radiation. In budding
yeast, further evidence of a Rad51p-independent pathway
requiring Rad59p has been presented [68]. 

The role of recombination in the expansion of trinu-
cleotide CAG repeats has been studied during yeast
meiosis by two groups. Both groups find that these repeats
have a higher rate of instability in meiosis than in growing
cells [69,70•]. Jankowski et al. [70•] make the important
observation that the CAG region becomes a prominent site
for Spo11p-mediated DSBs and that both large expansions
and contractions are frequently found during recombina-
tion between two different-sized CAG-containing regions
at the same site on homologous chromosomes. A related
finding is that CAG repeats show expansions during HO
endonuclease-induced mitotic recombination, whereas
replication of these sequences only produces contractions
[71]. Moreover, an apparent block in repair-associated
DNA replication is suppressed by over-expressing the
Mre11p-Rad50p-Xrs2p complex. 

During nonhomologous end-joining, it now appears that
the budding yeast homologue of XRCC4, Lif1p, binds to
DNA ends and targets DNA ligase IV to these sites [72].
Further evidence of the importance of this pathway in
mammalian cells is provided by Karajawala et al. [73], who
show that primary dermal fibroblasts of mice exhibit
increased rates of chromosome breakage when either Ku86
or Lig4 cells are heterozygous and especially when cells are
homozygous null for Ku86

A potentially important finding is that Swi2/Snf2 proteins
(whose yeast family members include both the UV-repair
Rad16p and the recombination proteins Rad54p and
Tdi1p) all contain a domain that specifically recognizes a
single- to double-strand transition in DNA structures [74•].
Such structures would be expected to form in many steps
of DNA replication, repair and recombination.
Interestingly, Rad51p also appears to prefer double-strand-
ed substrates with a single-stranded DNA end [75,76]. 

Finally, a recent paper has appeared that provides strong
evidence of a programmed use of a replication-induced
DSB to promote replication repair during the switching of
mating-type genes in S. pombe. Dalgaard and Klar [77]
showed that the production of a DSB by replication across
an ‘imprinted’ site in the mating-type locus is related to
the direction of the replication fork traversing the mating-
type locus. Arcangioli and de Lahondes [78] identify
recombination intermediates reflecting strand invasion
and new DNA synthesis that arise from this process.
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